论文标题
调查神经语言模型中动词偏见的表示
Investigating representations of verb bias in neural language models
论文作者
论文摘要
语言通常提供多种语法结构来表达某些类型的消息。众所周知,说话者选择的构造取决于多种因素,包括选择主动词 - 一种称为\ emph {动词偏置}的现象。在这里,我们介绍了Dais,这是一个大型基准数据集,其中包含50k人类的判断,用于英语的交替使用5k不同的句子对。该数据集包括200个唯一动词,并且系统地改变了参数的确定性和长度。我们使用此数据集以及现有的天然数据集群来评估最近的神经语言模型如何捕获人类偏好。结果表明,较大的模型的性能要比较小的模型更好,即使在可比的参数和训练设置下,变压器架构(例如GPT-2)也倾向于超越表演的复发架构(例如LSTMS)。对内部特征表示形式的其他分析表明,变压器可以更好地将特定的词汇信息与语法结构整合在一起。
Languages typically provide more than one grammatical construction to express certain types of messages. A speaker's choice of construction is known to depend on multiple factors, including the choice of main verb -- a phenomenon known as \emph{verb bias}. Here we introduce DAIS, a large benchmark dataset containing 50K human judgments for 5K distinct sentence pairs in the English dative alternation. This dataset includes 200 unique verbs and systematically varies the definiteness and length of arguments. We use this dataset, as well as an existing corpus of naturally occurring data, to evaluate how well recent neural language models capture human preferences. Results show that larger models perform better than smaller models, and transformer architectures (e.g. GPT-2) tend to out-perform recurrent architectures (e.g. LSTMs) even under comparable parameter and training settings. Additional analyses of internal feature representations suggest that transformers may better integrate specific lexical information with grammatical constructions.