论文标题

连接组学的多尺度图主要组件分析

Multi-scale graph principal component analysis for connectomics

论文作者

Winter, Steven, Zhang, Zhengwu, Dunson, David

论文摘要

在脑连接学中,在统计分析之前,将皮质表面分割成不同的感兴趣区域(ROI)。然后可以将每个个体的大脑连接组表示为图形,而节点对应于ROI,并且与ROI之间的连接相对应。这样的图可以总结为邻接矩阵,每个单元格包含一对ROI之间的连接强度。这些矩阵是对称元素的对称元素的对称,通常排除了自我连接。连接组的这种表示形式的主要缺点是它们对所选ROI的敏感性,包括关键的ROI数量以及图形的规模。随着比例变得更细,使用更多的ROI,图变得越来越稀疏。显然,下游统计分析的结果可以高度依赖于所选的分析。为了解决这个问题,我们提出了一个多尺度的图形分解,该图将量表特定分数通过一组共同的个人特定分数联系在一起。这些得分总结了个人的大脑结构,结合了跨测量量表的信息。我们获得了一种简单有效的算法,用于实施,并在模拟和分析人类Connectome Project数据集中说明了与单尺度方法相比的实质优势。

In brain connectomics, the cortical surface is parcellated into different regions of interest (ROIs) prior to statistical analysis. The brain connectome for each individual can then be represented as a graph, with the nodes corresponding to ROIs and edges to connections between ROIs. Such a graph can be summarized as an adjacency matrix, with each cell containing the strength of connection between a pair of ROIs. These matrices are symmetric with the diagonal elements corresponding to self-connections typically excluded. A major disadvantage of such representations of the connectome is their sensitivity to the chosen ROIs, including critically the number of ROIs and hence the scale of the graph. As the scale becomes finer and more ROIs are used, graphs become increasingly sparse. Clearly, the results of downstream statistical analyses can be highly dependent on the chosen parcellation. To solve this problem, we propose a multi-scale graph factorization, which links together scale-specific factorizations through a common set of individual-specific scores. These scores summarize an individual's brain structure combining information across measurement scales. We obtain a simple and efficient algorithm for implementation, and illustrate substantial advantages over single scale approaches in simulations and analyses of the Human Connectome Project dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源