论文标题
盐辅助CVD中的快速瞬态电荷捕获合成的单层MOS2现场效应晶体管
Fast transient charge trapping in salt-aided CVD synthesized monolayer MoS2 field-effect transistor
论文作者
论文摘要
原子较薄的半导体在信息和通信技术中具有多功能的未来应用,用于电子组件的最终微型化。特别是,正在进行的研究不仅需要对原始质量单层MOS2进行大规模合成,而且还需要进行纳米制作和表征方法,以研究内在的设备性能。在这里,我们对通过盐驱动方法生长的高质量CVD MOS2单层的现场效应晶体管(FET)中快速瞬态电荷捕获机制进行了细致研究。为了展现固有的晶体管行为,振幅扫描脉冲I〜V方法具有不同的脉冲宽度。通过施加最短的脉冲,实现了高达〜100%的现场效应迁移率的显着增加以及无滞后转移的特征。此外,为了关联这些结果,进行了单个脉冲时域漏极电流分析以释放快速和缓慢的瞬态电荷捕获现象。此外,实施了严格的密度功能理论(DFT)计算,以检查schottky屏障和金属诱导的差距状态在排水/源电极和MOS2之间的差距,以用于上级载流子传输。我们对可控瞬态电荷捕获机制的发现,用于估计盐辅助CVD生长的MOS2 FET中固有的现场效应迁移率和无滞后转移特性,将有助于将来的设备应用在复杂的内存,逻辑和传感器系统中。
Atomically thin semiconductors have versatile future applications in the information and communication technologies for the ultimate miniaturization of electronic components. In particular, the ongoing research demands not only a large-scale synthesis of pristine quality monolayer MoS2 but also advanced nanofabrication and characterization methods for investigation of intrinsic device performances. Here, we conduct a meticulous investigation of the fast transient charge trapping mechanisms in field-effect transistors (FETs) of high-quality CVD MoS2 monolayers grown by a salt-driven method. To unfold the intrinsic transistor behavior, an amplitude sweep pulse I~V methodology is adapted with varying pulse widths. A significant increase in the field-effect mobility up to ~100% is achieved along with a hysteresis-free transfer characteristic by applying the shortest pulse. Moreover, to correlate these results, a single pulse time-domain drain current analysis is carried out to unleash the fast and slow transient charge trapping phenomena. Furthermore, rigorous density functional theory (DFT) calculations are implemented to inspect the effects of the Schottky barrier and metal-induced gap states between drain/source electrode and MoS2 for the superior carrier transport. Our findings on the controllable transient charge trapping mechanisms for estimation of intrinsic field-effect mobility and hysteresis-free transfer characteristic in salt-assisted CVD-grown MoS2 FETs will be beneficial for future device applications in complex memory, logic, and sensor systems.