论文标题

EQCO:自我监督对比学习的同等规则

EqCo: Equivalent Rules for Self-supervised Contrastive Learning

论文作者

Zhu, Benjin, Huang, Junqiang, Li, Zeming, Zhang, Xiangyu, Sun, Jian

论文摘要

在本文中,我们提出了EQCO(对比学习的等效规则),以使自制的学习与对比度学习框架中的负样本数量无关。受此次原理的启发,我们指出,需要根据负对的数量来适应损失的边缘项,以保持稳定的相互信息绑定和梯度幅度。 EQCO弥合了各种负样本量之间的性能差距,因此,首次可以使用几对负面对(例如,每个查询16对)在像Imagenet这样的大型视觉数据集上进行自我观察的对比训练,而几乎没有准确的下降。这与当前实践中广泛使用的大批量培训或存储库机制形成鲜明对比。我们的简化MoCO(SIMO)配备了EQCO,与ImaCeNet(线性评估协议)上的MoCOV2达到了可比的精度,而每个查询仅涉及16个负对而不是65536,这表明大量的负样本在相比学习框架中不是关键因素。

In this paper, we propose EqCo (Equivalent Rules for Contrastive Learning) to make self-supervised learning irrelevant to the number of negative samples in the contrastive learning framework. Inspired by the InfoMax principle, we point that the margin term in contrastive loss needs to be adaptively scaled according to the number of negative pairs in order to keep steady mutual information bound and gradient magnitude. EqCo bridges the performance gap among a wide range of negative sample sizes, so that for the first time, we can use only a few negative pairs (e.g., 16 per query) to perform self-supervised contrastive training on large-scale vision datasets like ImageNet, while with almost no accuracy drop. This is quite a contrast to the widely used large batch training or memory bank mechanism in current practices. Equipped with EqCo, our simplified MoCo (SiMo) achieves comparable accuracy with MoCov2 on ImageNet (linear evaluation protocol) while only involves 16 negative pairs per query instead of 65536, suggesting that large quantities of negative samples is not a critical factor in contrastive learning frameworks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源