论文标题

使用耦合马尔可夫链的变异自动编码器的无偏梯度估计

Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled Markov Chains

论文作者

Ruiz, Francisco J. R., Titsias, Michalis K., Cemgil, Taylan, Doucet, Arnaud

论文摘要

变性自动编码器(VAE)是一个深层的可变模型,在类似自动编码器的架构中具有两个神经网络。其中一个参数化了模型的可能性。通过最大似然(ML)拟合其参数是充满挑战的,因为边际似然的计算涉及潜在空间上的棘手积分。因此,通过最大化变分的下限来训练VAE。在这里,我们通过引入对数类样梯度的无偏估计量来为VAE开发ML培训方案。我们通过使用一组重要性样本来增强潜在空间,与重要性加权自动编码器(IWAE)相似,然后在此增强空间上构建Markov Chain Monte Carlo耦合程序。我们提供可以在有限的时间和有限差异的情况下计算估计器的条件。我们通过实验表明,与无偏估计器配合的VAE具有更好的预测性能。

The variational auto-encoder (VAE) is a deep latent variable model that has two neural networks in an autoencoder-like architecture; one of them parameterizes the model's likelihood. Fitting its parameters via maximum likelihood (ML) is challenging since the computation of the marginal likelihood involves an intractable integral over the latent space; thus the VAE is trained instead by maximizing a variational lower bound. Here, we develop a ML training scheme for VAEs by introducing unbiased estimators of the log-likelihood gradient. We obtain the estimators by augmenting the latent space with a set of importance samples, similarly to the importance weighted auto-encoder (IWAE), and then constructing a Markov chain Monte Carlo coupling procedure on this augmented space. We provide the conditions under which the estimators can be computed in finite time and with finite variance. We show experimentally that VAEs fitted with unbiased estimators exhibit better predictive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源