论文标题

尺度空间能量密度传输方程的详细推导,用于可压缩的不均匀湍流

Detailed derivation of scale-Space Energy Density Transport Equation for Compressible Inhomogeneous Turbulent Flows

论文作者

Arun, S., Sameen, A., Srinivasan, Balaji, Girimaji, Sharath S.

论文摘要

缩放空间能量密度函数,$ e(\ mathbf {x},\ mathbf {r})$定义为两点速度相关的派生。该函数E描述了位置X处的尺度R的湍流动能密度,并且可以被视为光谱能量密度函数概念概念对不均匀流的概括。我们在可压缩流中得出规模空间能量密度函数的传输方程,以更好地理解对尺度到尺度的能量传递的理解和能量相互作用的非局部性程度。具体而言,可变密度和扩张对湍流能量动力学的影响。预计这些发现将对可压缩性效应产生更深入的见解,从而在所有闭合级别的闭合,密度变化,压力降低,压力 - 应变相关性和扩张性耗散过程中提高模型。

Scale-space energy density function, $E(\mathbf{x}, \mathbf{r})$, is defined as the derivative of the two-point velocity correlation. The function E describes the turbulent kinetic energy density of scale r at a location x and can be considered as the generalization of spectral energy density function concept to inhomogeneous flows. We derive the transport equation for the scale-space energy density function in compressible flows to develop a better understanding of scale-to-scale energy transfer and the degree of non-locality of the energy interactions. Specifically, the effects of variable-density and dilatation on turbulence energy dynamics are identified. It is expected that these findings will yield deeper insight into compressibility effects leading to improved models at all levels of closure for mass flux, density-variance, pressure-dilatation, pressure-strain correlation and dilatational dissipation processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源