论文标题
在Monge-ampère卷上直接图像
On Monge-Ampère volumes of direct images
论文作者
论文摘要
本文致力于研究与富含线条捆绑的高张量功率相关的Monge-ampère卷的渐近图。我们研究了该渐近学的主要术语,并提供了捆绑的分类,使Demailly的拓扑结构饱和。在充足的矢量束的高对称能力的特殊情况下,这提供了矢量束的特征,该载体束在投影平坦的Hermitian结构中承认。
This paper is devoted to the study of the asymptotics of Monge-Ampère volumes of direct images associated with high tensor powers of an ample line bundle. We study the leading term of this asymptotics and provide a classification of bundles saturating the topological bound of Demailly. In the special case of high symmetric powers of ample vector bundles, this provides a characterization of vector bundles admitting projectively flat Hermitian structures.