论文标题

在电极 - 固体电解质界面上调节纳米感染性,以防止固体固态电池和长寿命的备忘录

Modulating nano-inhomogeneity at electrode-solid electrolyte interfaces for dendrite-proof solid-state batteries and long-life memristors

论文作者

Lu, Ziheng, Yang, Ziwei, Li, Cheng, Wang, Kai, Han, Jinlong, Tong, Peifei, Li, Guoxiao, Vishnugopi, Bairav Sabarish, Mukherjee, Partha P., Yang, Chunlei

论文摘要

树突在陶瓷锂导体中的渗透严重限制了固态电池(SSB)的发展,而其纳米镜头起源仍未降低。我们开发了一种原位纳米级电化学特征技术,以揭示纳米锂树突生长动力学,并将其用作解锁树突防护剂SSB的接口设计的指导工具。使用LI7LA3ZR2O12(LLZO)作为模型系统,对纳米纳米型树突触发测量,前 - 静脉电力机械特征和有限的元素模拟进行了揭示Li+助理绕组和纳米机械内部机械内剂量渗透性的主导作用。为了减轻这种纳米感染性,设计了基于聚(碳酸丙烯)的离子传导性均质化层,该层与锂反应在轻度条件下与锂反应形成高度形式的相互作用。高临界电流密度为1.8mA cm-2和低界面电阻为14Ωcm2。基于LifePo4阴极的实用SSB表现出极大的循环稳定性,而没有容量衰减300个周期。除此之外,LLZO中高度可逆的电化学树突愈合行为是使用纳米电极发现的,基于纳米电极,以> 200个循环为基础,该模型的较高/OFF/OFF比率为〜10^5的模型备忘录。这项工作不仅提供了一种新颖的工具来调查和设计SSB中的接口,而且还为能源应用以外的固体电解质提供了新的机会。

The penetration of dendrites in ceramic lithium conductors severely constrains the development of solid-state batteries (SSBs) while its nanoscopic origin remain unelucidated. We develop an in-situ nanoscale electrochemical characterization technique to reveal the nanoscopic lithium dendrite growth kinetics and use it as a guiding tool to unlock the design of interfaces for dendrite-proof SSBs. Using Li7La3Zr2O12 (LLZO) as a model system, in-situ nanoscopic dendrite triggering measurements, ex-situ electro-mechanical characterizations, and finite element simulations are carried out which reveal the dominating role of Li+ flux detouring and nano-mechanical inhomogeneity on dendrite penetration. To mitigate such nano-inhomogeneity, an ionic-conductive homogenizing layer based on poly(propylene carbonate) is designed which in-situ reacts with lithium to form a highly conformal interphase at mild conditions. A high critical current density of 1.8mA cm-2 and a low interfacial resistance of 14Ω cm2 is achieved. Practical SSBs based on LiFePO4 cathodes show great cyclic stability without capacity decay over 300 cycles. Beyond this, highly reversible electrochemical dendrite healing behavior in LLZO is discovered using the nano-electrode, based on which a model memristor with a high on/off ratio of ~10^5 is demonstrated for >200 cycles. This work not only provides a novel tool to investigate and design interfaces in SSBs but offers also new opportunities for solid electrolytes beyond energy applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源