论文标题
通过图神经网络和PMU数据学习实现事件分类的潜在互动
Learning Latent Interactions for Event classification via Graph Neural Networks and PMU Data
论文作者
论文摘要
相量测量单元(PMU)已被广泛安装在电源系统上,为增强广阔的情境意识提供了独特的机会。一种必不可少的应用是使用PMU数据进行实时事件识别。但是,如何在事件识别中充分利用所有PMU数据仍然是一个开放的问题。因此,我们提出了一种新的方法,该方法通过挖掘不同PMU之间的相互作用图执行事件识别。所提出的交互图推理方法遵循完全数据驱动的方式,而不知道物理拓扑。此外,与以前的作品将交互式学习和事件识别视为两个不同的阶段不同,我们的方法与识别任务共同学习相互作用,从而提高了图形学习的准确性并确保两个阶段之间的无缝集成。此外,为了捕获多尺度事件模式,研究了基于扩张的基于启动的方法,以执行PMU数据的特征提取。为了测试所提出的数据驱动方法,在这项工作中已使用了来自数十个PMU来源的大型现实数据集以及相应的事件日志。数值结果验证了与以前的方法相比,我们的方法具有更高的分类精度。
Phasor measurement units (PMUs) are being widely installed on power systems, providing a unique opportunity to enhance wide-area situational awareness. One essential application is the use of PMU data for real-time event identification. However, how to take full advantage of all PMU data in event identification is still an open problem. Thus, we propose a novel method that performs event identification by mining interaction graphs among different PMUs. The proposed interaction graph inference method follows an entirely data-driven manner without knowing the physical topology. Moreover, unlike previous works that treat interactive learning and event identification as two different stages, our method learns interactions jointly with the identification task, thereby improving the accuracy of graph learning and ensuring seamless integration between the two stages. Moreover, to capture multi-scale event patterns, a dilated inception-based method is investigated to perform feature extraction of PMU data. To test the proposed data-driven approach, a large real-world dataset from tens of PMU sources and the corresponding event logs have been utilized in this work. Numerical results validate that our method has higher classification accuracy compared to previous methods.