论文标题
Szemerédi-petruska猜想的一些小值
The Szemerédi-Petruska conjecture for a few small values
论文作者
论文摘要
令h为n级n的3-均匀的超图,具有集团数k,使得H的所有最大集团的相交是空的。对于固定的m = n-k,szemerédi和petruska猜想了锋利的界限$ n \ leq {m+2 \ select 2} $。在本说明中,对M = 2,3和4的猜想进行了验证。
Let H be a 3-uniform hypergraph of order n with clique number k such that the intersection of all maximum cliques of H is empty. For fixed m=n-k, Szemerédi and Petruska conjectured the sharp bound $n\leq {m+2\choose 2}$. In this note the conjecture is verified for m=2,3 and 4.