论文标题

机器学习sato-tate猜想

Machine-Learning the Sato--Tate Conjecture

论文作者

He, Yang-Hui, Lee, Kyu-Hwan, Oliver, Thomas

论文摘要

我们应用了一些从机器学习的最新技术到虚拟曲线的算术。更确切地说,我们表明,具有令人印象深刻的准确性和信心(精度为99%至100%),并且在很短的时间内(在普通笔记本电脑上的几秒钟)中,贝叶斯分类器可以区分sato-tate组,而sato tate组给出了少量的L函数因素。我们的观察结果与低属曲线的Sato-Tate猜想保持一致。对于椭圆曲线,这等于区分通用曲线(具有SATO-TATE组SU(2))与具有复杂乘法的曲线。在第2属中,观察到主成分分析是将通用的sato-tate组USP(4)与非类别组分开的。此外,在这种情况下,与椭圆形曲线相比,非生成的可能性更多,我们证明了具有相同身份分量的几个Sato-Tate组的准确表征。在整个过程中,使用文献和LMFDB中可用数据的已知结果验证了我们的观察结果。本文的结果表明,可以对机器进行培训以学习Sato-Tate分布,并且可能比文献中可用的方法更有效地对曲线进行分类。

We apply some of the latest techniques from machine-learning to the arithmetic of hyperelliptic curves. More precisely we show that, with impressive accuracy and confidence (between 99 and 100 percent precision), and in very short time (matter of seconds on an ordinary laptop), a Bayesian classifier can distinguish between Sato-Tate groups given a small number of Euler factors for the L-function. Our observations are in keeping with the Sato-Tate conjecture for curves of low genus. For elliptic curves, this amounts to distinguishing generic curves (with Sato-Tate group SU(2)) from those with complex multiplication. In genus 2, a principal component analysis is observed to separate the generic Sato-Tate group USp(4) from the non-generic groups. Furthermore in this case, for which there are many more non-generic possibilities than in the case of elliptic curves, we demonstrate an accurate characterisation of several Sato-Tate groups with the same identity component. Throughout, our observations are verified using known results from the literature and the data available in the LMFDB. The results in this paper suggest that a machine can be trained to learn the Sato-Tate distributions and may be able to classify curves much more efficiently than the methods available in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源