论文标题
$^{142-150} $ nd和$^{152} $ sm中等级巨型偶极子共振的精细结构
Fine Structure of the Isovector Giant Dipole Resonance in $^{142-150}$Nd and $^{152}$Sm
论文作者
论文摘要
背景:已经建立了数百个MEV和非常前向角的能量的非弹性质子散射,包括$ 0^\ Circ $,作为研究核中电偶极强度分布的工具。本工作报告了对稳定的偶数质量ND同位素链的系统研究,该链代表了从球形到四杆核的过渡。 目的:提取等效的光吸收横截面及其在等型巨型偶极子共振(IVGDR)的能量区域中的精细结构的分析。 方法:在南非开普敦的ITHEMBA实验室测量了200 MEV质子的质子非弹性散射反应。散射产物由位于$θ_ {\ mathrm {lab}}} = 0^\ circ $的K600磁光谱仪进行动量 - 分析。使用分散匹配技术,获得了$ΔE\ 40-50 $ keV的能量分辨率。减去背景和其他多物的贡献后,使用等效的虚拟光子方法将光谱转换为吸收式横截面。 结果:小波 - 分析技术用于从实验数据中提取IVGDR的精细结构的特征能量尺度。与Quasiparticle-Phonon模型(QPM)和Skyrme可分离的随机相近似(SSRPA)预测的比较提供了对不同巨型共振阻尼机制的作用的洞察力。 结论:即使是研究最变形的核,也可以观察到精细的结构。一个粒子孔($ 1p1h $)强度的碎片似乎是球形和变形核中细胞结构的主要来源。在球形/过渡核中可以看到,由于两个粒子两孔孔($ 2p2h $)状态对$ 1p1h $门口状态的偶联引起的传播的某些影响,其中可用$ 1p1h $级别的计算。
Background: Inelastic proton scattering at energies of a few hundred MeV and very-forward angles including $0^\circ$ has been established as a tool to study electric-dipole strength distributions in nuclei. The present work reports a systematic investigation of the chain of stable even-mass Nd isotopes representing a transition from spherical to quadrupole-deformed nuclei. Purpose: Extraction of the equivalent photo-absorption cross sections and analysis of their fine structure in the energy region of the IsoVector Giant Dipole Resonance (IVGDR). Method: Proton inelastic scattering reactions of 200 MeV protons were measured at iThemba LABS in Cape Town, South Africa. The scattering products were momentum-analysed by the K600 magnetic spectrometer positioned at $θ_{\mathrm{Lab}}=0^\circ$. Using dispersion-matching techniques, energy resolutions of $ΔE \approx 40 - 50$ keV were obtained. After subtraction of background and contributions from other multipoles, the spectra were converted to photo-absorption cross sections using the equivalent virtual-photon method. Results: Wavelet-analysis techniques are used to extract characteristic energy scales of the fine structure of the IVGDR from the experimental data. Comparisons with the Quasiparticle-Phonon Model (QPM) and Skyrme Separable Random Phase Approximation (SSRPA) predictions provide insight into the role of different giant resonance damping mechanisms. Conclusions: Fine structure is observed even for the most deformed nuclei studied. Fragmentation of the one particle-one hole ($1p1h$) strength seems to be the main source of fine structure in both spherical and deformed nuclei. Some impact of the spreading due to coupling of the two particle-two hole ($2p2h$) states to the $1p1h$ doorway states is seen in the spherical/transitional nuclei, where calculations beyond the $1p1h$ level are available.