论文标题
曲线和Belyi定理的驯服形态具有积极特征
Tamely ramified morphisms of curves and Belyi's theorem in positive characteristic
论文作者
论文摘要
我们表明,在有限场上,每条平滑的投射曲线都承认了k上射线线的有限驯服形态。此外,当k是一个特征两个的无限完美场时,我们没有这样的曲线,没有这样的图。我们的作品以积极的特征为驯服的贝利定理(Saïdi),sugiyama-yasuda和anbar-tutdere的结果提供了完善。
We show that every smooth projective curve over a finite field k admits a finite tame morphism to the projective line over k. Furthermore, we construct a curve with no such map when k is an infinite perfect field of characteristic two. Our work leads to a refinement of the tame Belyi theorem in positive characteristic, building on results of Saïdi, Sugiyama-Yasuda, and Anbar-Tutdere.