论文标题
在近似超国家的探索中,用于元加强学习
Exploration in Approximate Hyper-State Space for Meta Reinforcement Learning
论文作者
论文摘要
要快速学习一项新任务,对于代理商来说,有效探索通常是必不可少的 - 尤其是在第一次时间段的性能重要的情况下。学习这种行为的一种方法是通过元学习。但是,许多现有的方法依靠密集的奖励来进行元训练,如果奖励很少,可能会灾难性地失败。没有适当的奖励信号,元训练期间探索的需求会加剧。为了解决这个问题,我们提出了Hyperx,它使用新颖的奖励奖金来进行元训练在近似超国家空间(Hyper-STATE代表环境状态和代理商的任务信念)中进行探索。我们从经验上表明,与现有方法相比,Hyperx Meta-learns更好的任务探索和更成功地适应了新任务。
To rapidly learn a new task, it is often essential for agents to explore efficiently -- especially when performance matters from the first timestep. One way to learn such behaviour is via meta-learning. Many existing methods however rely on dense rewards for meta-training, and can fail catastrophically if the rewards are sparse. Without a suitable reward signal, the need for exploration during meta-training is exacerbated. To address this, we propose HyperX, which uses novel reward bonuses for meta-training to explore in approximate hyper-state space (where hyper-states represent the environment state and the agent's task belief). We show empirically that HyperX meta-learns better task-exploration and adapts more successfully to new tasks than existing methods.