论文标题
Riesz的Lumer hardy空间定理
Riesz's Theorem for Lumer's Hardy Spaces
论文作者
论文摘要
在本说明中,我们获得了众所周知的Riesz定理的版本,用于Lumer的Hardy Space $(lh)^2(ω)$ $ω$的谐谐波函数:如果真实价值的谐波函数$ u \ u \ u \ u \ u \ in(lh)^2(ω) iv $在$ω$上进行了分析,然后$ u+iv $也属于$(lh)^2(ω)$,对于归一化的偶联,我们具有规范估计$ \ | U+IV \ | _____ {(lh)^2(ω)^2(ω)}以最好的常数。
In this note we obtain a version of the well-known Riesz's theorem on conjugate harmonic functions for Lumer's Hardy spaces $(Lh)^2(Ω)$ on arbitrary domains $Ω$: If a real-valued harmonic function $U\in (Lh)^2(Ω)$ has a harmonic conjugate $V$ on $Ω$ (i.e., a real-valued harmonic function such that $U+ iV$ is analytic on $Ω$), then $U+iV$ also belongs to $(Lh)^2(Ω)$, and for the normalized conjugate we have the norm estimate $\|U+iV\|_{(Lh)^2(Ω)}\le\sqrt{2} \|U\|_{(Lh)^2(Ω)}$, with the best possible constant.