论文标题

丰富具有时间和空间信息的单词嵌入

Enriching Word Embeddings with Temporal and Spatial Information

论文作者

Gong, Hongyu, Bhat, Suma, Viswanath, Pramod

论文摘要

单词的含义与可以随时间和位置变化的社会文化因素紧密相关,从而导致相应的含义变化。以广泛使用的语言(例如英语)对单词及其含义进行全球视图,可能要求我们捕获更多精致的语义,以在特定时间或位置意识的情况下使用,例如对文化趋势或语言使用的研究。但是,单词的流行矢量表示并不能充分包含时间或空间信息。在这项工作中,我们提出了一个模型,用于学习以时间和位置为条件的单词表示形式。除了捕获随时间和位置的含义变化外,我们还要求产生的单词嵌入保持显着的语义和几何属性。我们在时间和位置踩踏的语料库上训练模型,并使用定量和定性评估表明它可以在时间和位置捕获语义。我们注意到,我们的模型与特定时间嵌入的最先进的图案相比,并作为特定于位置特定嵌入的新基准。

The meaning of a word is closely linked to sociocultural factors that can change over time and location, resulting in corresponding meaning changes. Taking a global view of words and their meanings in a widely used language, such as English, may require us to capture more refined semantics for use in time-specific or location-aware situations, such as the study of cultural trends or language use. However, popular vector representations for words do not adequately include temporal or spatial information. In this work, we present a model for learning word representation conditioned on time and location. In addition to capturing meaning changes over time and location, we require that the resulting word embeddings retain salient semantic and geometric properties. We train our model on time- and location-stamped corpora, and show using both quantitative and qualitative evaluations that it can capture semantics across time and locations. We note that our model compares favorably with the state-of-the-art for time-specific embedding, and serves as a new benchmark for location-specific embeddings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源