论文标题
使用Sylvester方程补偿PDE执行器和传感器动力学
Compensating PDE actuator and sensor dynamics using Sylvester equation
论文作者
论文摘要
我们考虑稳定PDE-ODE级联系统的问题,其中输入应用于其输出驱动ODE系统的PDE系统。我们还考虑了构造ODE-PDE级联系统的观察者的双重问题,其中ODE系统的输出驱动了PDE系统的pde系统,该系统的输出被测量。这些问题中的PDE稳定,颂歌不稳定。尽管ODE系统在两个问题中都对植物进行建模,但PDE系统在稳定问题和双重问题中的传感器中对执行器进行建模。在文献中,这些问题已用于使用反向替代方法的特定PDE模型解决。相比之下,在目前的工作中,我们通过让PDE系统是任何常规的线性系统来考虑抽象框架中的这些问题。使用通过用无限运算符求解Sylvester方程获得的状态转换,我们首先将与级联系统相对应的状态操作员对角线化。然后,我们解决了稳定问题和双重估计问题,只要可以解决某些有限维度对应物,就可以解决。我们还得出了验证这些问题的可溶性的必要条件。我们表明,解决稳定问题的控制器对某些无限的扰动是可靠的。我们通过为PDE-ODE CASCADE设计稳定控制器来说明我们的理论,其中PDE是1D扩散方程,并且是ODE-PDE CASCADE的观察者,其中PDE是1D波方程。
We consider the problem of stabilizing PDE-ODE cascade systems in which the input is applied to the PDE system whose output drives the ODE system. We also consider the dual problem of constructing an observer for ODE-PDE cascade systems in which the output of the ODE system drives the PDE system, whose output is measured. The PDE in these problems is stable and the ODE is unstable. While the ODE system models the plant in both the problems, the PDE system models the actuator in the stabilization problem and the sensor in the dual problem. In the literature, these problems have been solved for specific PDE models using the backstepping approach. In contrast, in the present work we consider these problems in an abstract framework by letting the PDE system be any regular linear system. Using a state transformation obtained by solving a Sylvester equation with unbounded operators, we first diagonalize the state operator corresponding to the cascade systems. We then solve the stabilization problem and the dual estimation problem, provided they are solvable, by solving certain finite-dimensional counterparts. We also derive necessary and sufficient conditions for verifying the solvability of these problems. We show that the controller which solves the stabilization problem is robust to certain unbounded perturbations. We illustrate our theory by designing a stabilizing controller for a PDE-ODE cascade in which the PDE is a 1D diffusion equation and an observer for a ODE-PDE cascade in which the PDE is a 1D wave equation.