论文标题
拓扑节点金属的磁能水平中的魔态接触点
Diabolical touching point in the magnetic energy levels of topological nodal-line metals
论文作者
论文摘要
对于三维金属,Landau水平分散在磁场和平行于该场的动量波数。在这个二维参数空间中,表明两个圆锥形散落的Landau水平可以在恶魔般的点 - Landau-Dirac点接触。产生Landau-Dirac点的条件显示为磁故障(田间诱导的量子隧穿)和某些晶体学时空对称性。在拓扑结节金属中,这两种情况都是可以实现的,因为我们用CAP $ _3 $进行了体现。 Landau-dirac点在磁磁性中以及光吸收的发作中以异常的蝙蝠侠样峰表现出自身,该峰在线性演变为零频率上随着场幅度/方向的函数。
For three-dimensional metals, Landau levels disperse as a function of the magnetic field and the momentum wavenumber parallel to the field. In this two-dimensional parameter space, it is shown that two conically-dispersing Landau levels can touch at a diabolical point -- a Landau-Dirac point. The conditions giving rise to Landau-Dirac points are shown to be magnetic breakdown (field-induced quantum tunneling) and certain crystallographic spacetime symmetry. Both conditions are realizable in topological nodal-line metals, as we exemplify with CaP$_3$. A Landau-Dirac point reveals itself in anomalous batman-like peaks in the magnetoresistance, as well as in the onset of optical absorption linearly evolving to zero frequency as a function of the field magnitude/orientation.