论文标题
Mini-DDSM:基于乳房X线摄影的自动年龄估计
Mini-DDSM: Mammography-based Automatic Age Estimation
论文作者
论文摘要
年龄估计引起了对其各种医疗应用的关注。关于生物医学图像的人类年龄估计有许多研究。但是,据我们所知,尚无对乳房X线照片进行乳房X线照片的研究。这项研究的目的是设计一个基于AI的模型,用于估算乳房X线照片图像的年龄。由于缺乏具有年龄属性的公共乳腺X线摄影数据集,因此我们求助于使用Web搜寻器从公共数据集下载缩略图乳腺X线X线X射线图像及其年龄领域;用于筛选乳房X线摄影的数字数据库。不幸的是,此数据集中的原始图像只能通过破坏的软件来检索。随后,我们从收集的数据集中提取了深度学习特征,通过该功能,我们使用随机森林回归器构建了一个模型来自动估计年龄。使用平均绝对误差值测量绩效评估。对样品随机选择的10个测试中的平均误差值约为8年。在本文中,我们展示了这种方法的优点,以填补缺失的年龄值。我们在另一个独立数据集上运行了逻辑和线性回归模型,以进一步验证我们提出的工作的优势。本文还介绍了自由访问迷你DDSM数据集。
Age estimation has attracted attention for its various medical applications. There are many studies on human age estimation from biomedical images. However, there is no research done on mammograms for age estimation, as far as we know. The purpose of this study is to devise an AI-based model for estimating age from mammogram images. Due to lack of public mammography data sets that have the age attribute, we resort to using a web crawler to download thumbnail mammographic images and their age fields from the public data set; the Digital Database for Screening Mammography. The original images in this data set unfortunately can only be retrieved by a software which is broken. Subsequently, we extracted deep learning features from the collected data set, by which we built a model using Random Forests regressor to estimate the age automatically. The performance assessment was measured using the mean absolute error values. The average error value out of 10 tests on random selection of samples was around 8 years. In this paper, we show the merits of this approach to fill up missing age values. We ran logistic and linear regression models on another independent data set to further validate the advantage of our proposed work. This paper also introduces the free-access Mini-DDSM data set.