论文标题
社区检测,模式识别和基于超图的学习:使用度量几何学和持续同源性的方法
Community detection, pattern recognition, and hypergraph-based learning: approaches using metric geometry and persistent homology
论文作者
论文摘要
HyperGraph数据出现并隐藏在现代的许多地方。它们是数据结构,可用于模拟许多真实数据示例,因为它们的结构包含有关数据点之间高阶关系的信息。我们论文的主要贡献之一是为超图数据引入新的拓扑结构,该结构与通常的度量空间结构相似。使用HyperGraph数据的新拓扑空间结构,我们提出了几种研究社区检测问题的方法,检测了HyperGraph数据同源结构引起的持续特征。同样,基于论文中引入的超图数据的拓扑空间结构,我们引入了一种修改的最近的邻居方法,该方法是对机器学习的经典最近邻居方法的概括。我们修改的最近的邻居方法具有非常灵活和适用的优势,即使对于超图中的离散结构也是如此。然后,我们将修改后的最近的邻居方法应用于使用我们方法构建的裁定数据中的符号预测问题。
Hypergraph data appear and are hidden in many places in the modern age. They are data structure that can be used to model many real data examples since their structures contain information about higher order relations among data points. One of the main contributions of our paper is to introduce a new topological structure to hypergraph data which bears a resemblance to a usual metric space structure. Using this new topological space structure of hypergraph data, we propose several approaches to study community detection problem, detecting persistent features arising from homological structure of hypergraph data. Also based on the topological space structure of hypergraph data introduced in our paper, we introduce a modified nearest neighbors methods which is a generalization of the classical nearest neighbors methods from machine learning. Our modified nearest neighbors methods have an advantage of being very flexible and applicable even for discrete structures as in hypergraphs. We then apply our modified nearest neighbors methods to study sign prediction problem in hypegraph data constructed using our method.