论文标题
耦合Mixmaster振荡器中同步的发作
Onset of synchronization in coupled Mixmaster oscillators
论文作者
论文摘要
我们考虑了不同空间点的渐近同步的问题,这些空间点在不均匀时空和混乱的混合示波器振荡朝向奇点的情况下相互耦合。我们证明,对于大于某些阈值的耦合,两个混合空间点$ a,b $,过去$ b $的$ a $,同步,从而与最初的奇点完美地保持一致。我们进一步表明,同步动力学有一个lyapunov函数,它使不同的空间点能够在过去的方向上快速地同步。我们提供了一个基本证据,证明任意空间点如何响应振荡器创建的平均场,从而通过自发同步导致其直接相互作用。这些结果归因于早期同步的明确物理含义,从而导致两个BKL地图的重置效果,与两个不同的振荡空间点相对应,因为两个地图在同步结束时彼此汇聚在一起变得无法区分。我们的结果表明,宇宙一般通过更简单,同步的状态来组织自己,因为它接近最初的奇异性。还提供了关于早期不均匀混合主管同步的进一步含义的讨论。
We consider the problem of asymptotic synchronization of different spatial points coupled to each other in inhomogeneous spacetime and undergoing chaotic Mixmaster oscillations towards the singularity. We demonstrate that for couplings larger than some threshold value, two Mixmaster spatial points $A,B$, with $A$ in the past of $B$, synchronize and thereby proceed in perfect unison towards the initial singularity. We further show that there is a Lyapunov function for the synchronization dynamics that makes different spatial points able to synchronize exponentially fast in the past direction. We provide an elementary proof of how an arbitrary spatial point responds to the mean field created by the oscillators, leading to their direct interaction through spontaneous synchronization. These results ascribe a clear physical meaning of early-time synchronization leading to a resetting effect for the two BKL maps corresponding to two distinct oscillating spatial points, as the two maps converge to each other to become indistinguishable at the end of synchronization. Our results imply that the universe generically organizes itself through simpler, synchronized, states as it approaches the initial singularity. A discussion of further implications of early-time inhomogeneous Mixmaster synchronization is also provided.