论文标题

在混合超平差的重量序列设置中的最大延伸

On the maximal extension in the mixed ultradifferentiable weight sequence setting

论文作者

Schindl, Gerhard

论文摘要

对于超平差的重量序列设置,已知为每个函数分配的骨图(在0时)在相应的加权序列类上过冲到相应的加权序列类上,并且仅当序列对roumieu-和beurling-type类具有强烈的非quasianalytic is of quasiantic分析。序列是非quasiantic,但不是强烈的非quasiantial分析允许受控的规律性丧失,并且我们确定两种类型的混合设置的最大序列,因此在这种情况下获得了有关溢流性损失的信息。此外,我们比较了文献中出现的两种混合强非quasiantiality条件的最佳序列。

For the ultradifferentiable weight sequence setting it is known that the Borel map which assigns to each function the infinite jet of derivatives (at 0) is surjective onto the corresponding weighted sequence class if and only if the sequence is strongly nonquasianalytic for both the Roumieu- and Beurling-type classes. Sequences which are nonquasianalytic but not strongly nonquasianalytic admit a controlled loss of regularity and we determine the maximal sequence for which such a mixed setting is possible for both types, hence get information on the controlled loss of surjectivity in this situation. Moreover, we compare the optimal sequences for both mixed strong nonquasianalyticity conditions arising in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源