论文标题
氧气退火引起的β-GA2O3外延膜中缺陷的变化,使用光致发光测量
Oxygen annealing induced changes in defects within beta-Ga2O3 epitaxial films measured using photoluminescence
论文作者
论文摘要
在这项工作中,我们使用光致发光光谱(PL)来监视N型(010)GA2O3膜的UV,UV',蓝色和绿色发射带的变化,该膜在O2 Ambient下在不同温度下通过在不同温度下诱导的金属有机蒸气相(MOVPE)而生长。在较高的温度下进行退火会以几乎相同的速率降低总PL产量和紫外线强度,这表明至少一种非辐射性缺陷类型的形成增加。同时,蓝/紫外线和绿色/紫外线的PL产量比增加,这表明与这些排放相关的缺陷随着O2退火而增加。利用240和266 nm极化依赖性激发的不同吸收系数,我们发现了整体中非辐射性缺陷为0.69 eV的总体活化能,但在表面附近1.55 eV。我们还通过膜上推断出表面附近0.60 eV的绿色发射相关缺陷的激活能,而与蓝色相关的缺陷在所有深度中都具有0.43-0.62 eV范围内的激活能量。最后,我们观察到丘陵表面形态和Cr从底物扩散到膜中,以高于1050 oC的温度。这些观察结果与VGA及其复合物作为O2退火期间的主要过程的形成和扩散是一致的,但是对于确定哪些缺陷和复合物提供了进一步的工作,提供了辐射性和非辐射性重组通道以及在缺陷群体中发生的表面和散装中发生的详细动力学过程。
In this work, we use photoluminescence spectroscopy (PL) to monitor changes in the UV, UV', blue, and green emission bands from n-type (010) Ga2O3 films grown by metalorganic vapor phase epitaxy (MOVPE) induced by annealing at different temperatures under O2 ambient. Annealing at successively higher temperatures decreases the overall PL yield and UV intensity at nearly the same rates, indicating the increase in formation of at least one non-radiative defect type. Simultaneously, the PL yield ratios of blue/UV and green/UV increase, suggesting that defects associated with these emissions increase in concentration with O2 annealing. Utilizing the different absorption coefficients of 240 and 266 nm polarization-dependent excitation, we find an overall activation energy for the generation of non-radiative defects of 0.69 eV in the bulk but 1.55 eV near the surface. We also deduce activation energies for the green emission-related defects of 0.60 eV near the surface and 0.89-0.92 eV through the films, whereas the blue-related defects have activation energy in the range 0.43-0.62 eV for all depths. Lastly, we observe hillock surface morphologies and Cr diffusion from the substrate into the film for temperatures above 1050 oC. These observations are consistent with the formation and diffusion of VGa and its complexes as a dominant process during O2 annealing, but further work will be necessary to determine which defects and complexes provide radiative and non-radiative recombination channels and the detailed kinetic processes occurring at surfaces and in bulk amongst defect populations.