论文标题

有限的社会距离如何最好地减少流行最终规模?

How Best Can Finite-Time Social Distancing Reduce Epidemic Final Size?

论文作者

Bliman, Pierre-Alexandre, Duprez, Michel

论文摘要

考虑到最大的社会距离持续时间和强度,人们如何将爆发期间感染的个体总数最小化?这里为SIR流行模型提供了对该问题的完整答案。在这种简化的设置中,最佳解决方案包括在最长允许的时期内实施最高的限制水平,这是从某个时间瞬间开始的,这是对某些1D优化问题的独特解决方案。基于此结果,我们提出数值结果,显示了大量基本繁殖数字以及锁定持续时间和强度的最佳性能。

Given maximal social distancing duration and intensity, how can one minimize the epidemic final size, or equivalently the total number of individuals infected during the outbreak? A complete answer to this question is provided and demonstrated here for the SIR epidemic model. In this simplified setting, the optimal solution consists in enforcing the highest confinement level during the longest allowed period, beginning at a time instant that is the unique solution to certain 1D optimization problem. Based on this result, we present numerical results showing the best possible performance for a large set of basic reproduction numbers and lockdown durations and intensities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源