论文标题
地幔氧化状态的影响并逃脱了地球岩浆海洋大气的演变
Effect of mantle oxidation state and escape upon the evolution of Earth's magma ocean atmosphere
论文作者
论文摘要
岩浆海洋时期是一个关键阶段,确定地球大气如何发展为可居住性。然而,关键过程的作用有主要的不确定性,例如从行星内部和物种逃脱到空间的燃气,在确定早期地球大气中起着重要作用。我们研究了各种物种的挤压和h $ _2 $逃脱对不同地幔氧化还原状态的影响对岩浆海洋时期大气的组成和演变的影响。我们包括一个重要的新大气上间耦合机制,即地幔的氧化还原演化,这会强烈影响物种的吹口。我们通过采用基于C-H-O的化学物种形成模型与内部超出模型的模型来模拟地面各种氧化还原状态的挥发性量表和化学物种形成。然后,我们采用逐线辐射转移模型,以根据红外发射和传输来研究行星的远程外观。最后,我们使用参数化扩散限制和XUV能量驱动的大气逃逸模型来计算h $ _2 $对空间的损失。我们已经模拟了地球时期岩浆海洋期间存在的减少或氧化大气的热发射和传输光谱。与氧化或浓稠的气氛相比,由H $ _2 $散发出更多的辐射,并具有更大的有效高度,而氧化或厚度较高的大气层则是h $ _2 $ o _2 $ o和co $ _2 $的降低或稀薄的气氛。我们从地幔到大气的H2的量速率比扩散限制的逃逸速率大十倍。我们的工作为岩浆海洋时期的地球大气发展提供了有用的洞察力,以及指导未来讨论超球门内部组成的研究。
The magma ocean period was a critical phase determining how Earth atmosphere developed into habitability. However there are major uncertainties in the role of key processes such as outgassing from the planetary interior and escape of species to space that play a major role in determining the atmosphere of early Earth. We investigate the influence of outgassing of various species and escape of H$_2$ for different mantle redox states upon the composition and evolution of the atmosphere for the magma ocean period. We include an important new atmosphere-interior coupling mechanism namely the redox evolution of the mantle which strongly affects the outgassing of species. We simulate the volatile outgassing and chemical speciation at the surface for various redox states of the mantle by employing a C-H-O based chemical speciation model combined with an interior outgassing model. We then apply a line-by-line radiative transfer model to study the remote appearance of the planet in terms of the infrared emission and transmission. Finally, we use a parameterized diffusion-limited and XUV energy-driven atmospheric escape model to calculate the loss of H$_2$ to space. We have simulated the thermal emission and transmission spectra for reduced or oxidized atmospheres present during the magma ocean period of Earth. Reduced or thin atmospheres consisting of H$_2$ in abundance emit more radiation to space and have larger effective height as compared to oxidized or thick atmospheres which are abundant in H$_2$O and CO$_2$. We obtain the outgassing rates of H2 from the mantle into the atmosphere to be a factor of ten times larger than the rates of diffusion-limited escape to space. Our work presents useful insight into the development of Earth atmosphere during the magma ocean period as well as input to guide future studies discussing exoplanetary interior compositions.