论文标题

灵感:朝着社交建议对话系统

INSPIRED: Toward Sociable Recommendation Dialog Systems

论文作者

Hayati, Shirley Anugrah, Kang, Dongyeop, Zhu, Qingxiaoyang, Shi, Weiyan, Yu, Zhou

论文摘要

在推荐对话中,人类通常会披露其偏好,并以友好的方式提出建议。但是,由于缺乏与此类社交策略注释的对话数据集,这是一个挑战,在开发社交推荐对话系统时,这是一个挑战。因此,我们提出了一个受启发的,这是一个新的数据集,其中包括1,001个人类对话框,用于电影推荐,并采取成功的建议。为了更好地了解人类如何在交流中提出建议,我们设计了一种与基于社会科学理论的建议策略相关的注释计划,并注释了这些对话。我们的分析表明,社交推荐策略,例如分享个人意见或以鼓励进行交流,更频繁地导致了成功的建议。根据我们的数据集,我们有或没有我们的策略标签,培训端到端推荐对话系统。在自动和人类评估中,我们的策略融合模型的表现优于基线模型。这项工作是建立具有社会科学理论基础的社交建议对话系统的第一步。

In recommendation dialogs, humans commonly disclose their preference and make recommendations in a friendly manner. However, this is a challenge when developing a sociable recommendation dialog system, due to the lack of dialog dataset annotated with such sociable strategies. Therefore, we present INSPIRED, a new dataset of 1,001 human-human dialogs for movie recommendation with measures for successful recommendations. To better understand how humans make recommendations in communication, we design an annotation scheme related to recommendation strategies based on social science theories and annotate these dialogs. Our analysis shows that sociable recommendation strategies, such as sharing personal opinions or communicating with encouragement, more frequently lead to successful recommendations. Based on our dataset, we train end-to-end recommendation dialog systems with and without our strategy labels. In both automatic and human evaluation, our model with strategy incorporation outperforms the baseline model. This work is a first step for building sociable recommendation dialog systems with a basis of social science theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源