论文标题
通过新闻,情感和叙事进行宏观经济预测
Macroeconomic forecasting through news, emotions and narrative
论文作者
论文摘要
这项研究提出了一种新方法,将报纸文章中的情绪融合到宏观经济预测中,试图预测工业生产和消费者价格利用全球报纸的叙事和情感。在大多数情况下,现有的研究包括积极和负面的基调,仅用于改善宏观经济预测,主要集中在美国等大型经济体上。这些作品主要使用英语叙事来源,因此无法捕捉全球新闻文章中包含的多种情感的全部复杂性。这项研究通过将全球报纸的各种各样的情绪纳入全球事件,语言和语调(GDELT)(GDELT)的各种情绪(从世界各地的报纸)中扩展到宏观经济预测中,从而扩展了现有的研究体系。我们提出了一种基于双向长期记忆神经网络(BI-LSTM)的主题数据过滤方法,用于从GDELT中提取情绪评分,并通过比较过滤和未过滤的数据来证明其有效性。我们使用自回归框架对各种经济体进行工业生产和消费者价格进行了建模,并发现包括全球报纸的情感可显着改善预测,而三种自动回归基准模型。我们通过对不同情绪群体的可解释性分析来补充我们的预测,并发现与幸福和愤怒相关的情绪对我们预测的变量具有最强的预测能力。
This study proposes a new method of incorporating emotions from newspaper articles into macroeconomic forecasts, attempting to forecast industrial production and consumer prices leveraging narrative and sentiment from global newspapers. For the most part, existing research includes positive and negative tone only to improve macroeconomic forecasts, focusing predominantly on large economies such as the US. These works use mainly anglophone sources of narrative, thus not capturing the entire complexity of the multitude of emotions contained in global news articles. This study expands the existing body of research by incorporating a wide array of emotions from newspapers around the world - extracted from the Global Database of Events, Language and Tone (GDELT) - into macroeconomic forecasts. We present a thematic data filtering methodology based on a bi-directional long short term memory neural network (Bi-LSTM) for extracting emotion scores from GDELT and demonstrate its effectiveness by comparing results for filtered and unfiltered data. We model industrial production and consumer prices across a diverse range of economies using an autoregressive framework, and find that including emotions from global newspapers significantly improves forecasts compared to three autoregressive benchmark models. We complement our forecasts with an interpretability analysis on distinct groups of emotions and find that emotions associated with happiness and anger have the strongest predictive power for the variables we predict.