论文标题
具有正方形的不可舒适互动的远程渗透模型的截断
Truncation of long-range percolation model with square non-summable interactions
论文作者
论文摘要
我们考虑了与远程渗透中截断问题有关的一些问题。概率是某些面向长期的债券是开放的。假设这种概率是不可总结的,我们询问当我们将图形截断时,渗透的概率是否为正,将范围的键键放置在可能大而有限但有限的阈值之上。如果顶点为$ \ z^2 $,则此问题仍然是打开的。我们给出一些答案是肯定的条件。这些结果之一将先前的结果推广到[Alves,Hilário,de Lima,Valesin,Journ。统计物理。 {\ bf 122},972(2017)]。
We consider some problems related to the truncation question in long-range percolation. It is given probabilities that certain long-range oriented bonds are open; assuming that this probabilities are not summable, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. This question is still open if the set of vertices is $\Z^2$. We give some conditions in which the answer is affirmative. One of these results generalize the previous result in [Alves, Hilário, de Lima, Valesin, Journ. Stat. Phys. {\bf 122}, 972 (2017)].