论文标题
理论化学中量子流体力学的几何形状
Geometry of quantum hydrodynamics in theoretical chemistry
论文作者
论文摘要
本文研究了量子流体动力学(QHD)的几何方法,以开发理论量子化学中的应用。 基于QHD的动量图几何结构以及相关的Lie-Poisson和Euler-Poincaré方程,介绍了QHD中经典极限的替代几何方法。其中包括一种新的正规拉格朗日语,该溶液允许使用称为“ bohmions”的单数解决方案以及“冷液”经典闭合量子混合状态。 然后将QHD的动量图方法应用于称为精确分解的化学模型中的核动力学。几何处理扩展了现有的方法,以包括核流框架中的单一电子演化,从而携带Euler-Poincaré和Lie-Poisson结构的产生动力学。然后,通过考虑分子密度基质水平的广义分解ANSATZ来得出一个新的混合量子古典模型。 然后构建了QHD的新替代几何公式。引入$ \ mathfrak {u}(1)$连接作为新的基本变量,提供了一种新方法,用于在QHD中纳入整体,这是根据其恒定的非零曲率遵循的。流体流不再是无关的,并且具有非平凡的循环定理,从而实现了涡流溶液。 最后,然后在量子力学中考虑非亚洲连接。 Pauli方程中自旋向量的动力学允许引入$ \ Mathfrak {so}(3)$连接,而更通用的$ \ Mathfrak {u}(\ Mathscr {H})$连接是从量子系统的单位进化中引入的。这用于为浆果连接和量子几何张量提供新的几何图片,然后考虑相关的量子化学应用。
This thesis investigates geometric approaches to quantum hydrodynamics (QHD) in order to develop applications in theoretical quantum chemistry. Based upon the momentum map geometric structure of QHD and the associated Lie-Poisson and Euler-Poincaré equations, alternative geometric approaches to the classical limit in QHD are presented. These include a new regularised Lagrangian which allows for singular solutions called 'Bohmions' as well as a 'cold fluid' classical closure quantum mixed states. The momentum map approach to QHD is then applied to the nuclear dynamics in a chemistry model known as exact factorization. The geometric treatment extends existing approaches to include unitary electronic evolution in the frame of the nuclear flow, with the resulting dynamics carrying both Euler-Poincaré and Lie-Poisson structures. A new mixed quantum-classical model is then derived by considering a generalised factorisation ansatz at the level of the molecular density matrix. A new alternative geometric formulation of QHD is then constructed. Introducing a $\mathfrak{u}(1)$ connection as the new fundamental variable provides a new method for incorporating holonomy in QHD, which follows from its constant non-zero curvature. The fluid flow is no longer irrotational and carries a non-trivial circulation theorem, allowing for vortex filament solutions. Finally, non-Abelian connections are then considered in quantum mechanics. The dynamics of the spin vector in the Pauli equation allows for the introduction of an $\mathfrak{so}(3)$ connection whilst a more general $\mathfrak{u}(\mathscr{H})$ connection is introduced from the unitary evolution of a quantum system. This is used to provide a new geometric picture for the Berry connection and quantum geometric tensor, whilst relevant applications to quantum chemistry are then considered.