论文标题
一种基于模型的方法来评估流行风险
A model-based approach to assess epidemic risk
论文作者
论文摘要
我们研究国际航班如何促进流行病到全球范围的传播。我们将飞行连接的基础设施网络与人口密度数据集相结合以得出移动性网络,然后定义一个流行框架来模拟疾病的传播。我们的方法将隔室SEIRS模型与图扩散模型相结合,以捕获人群分布的簇。所得模型的特征在于种群seirs的动力学,并通过放大或降低感染率,这也是由个体的迁移率确定的。我们使用模拟来表征和研究各种现实的场景,这些场景类似于Covid-19的最新传播。至关重要的是,我们定义了一个正式的框架,该框架可用于设计流行病的策略:我们提出了一种基于遗传算法的优化方法,该方法可用于确定最佳的机场关闭策略,并且可以用来及时地帮助缓解这种流行病的决策。
We study how international flights can facilitate the spread of an epidemic to a worldwide scale. We combine an infrastructure network of flight connections with a population density dataset to derive the mobility network, and then we define an epidemic framework to model the spread of the disease. Our approach combines a compartmental SEIRS model with a graph diffusion model to capture the clusteredness of the distribution of the population. The resulting model is characterised by the dynamics of a metapopulation SEIRS, with amplification or reduction of the infection rate which is determined also by the mobility of individuals. We use simulations to characterise and study a variety of realistic scenarios that resemble the recent spread of COVID-19. Crucially, we define a formal framework that can be used to design epidemic mitigation strategies: we propose an optimisation approach based on genetic algorithms that can be used to identify an optimal airport closure strategy, and that can be employed to aid decision making for the mitigation of the epidemic, in a timely manner.