论文标题
$α$ -li $ _ {\ rm 3} $ n型晶体结构的拓扑阶段
Topological phases in $α$-Li$_{\rm 3}$N-type crystal structure of light-element compounds
论文作者
论文摘要
具有可调拓扑特征,简单晶体结构和柔性合成的材料对拓扑结节点的独特特性的技术开发非常有需求。光元素的晶格几何形状的受控设计是通过利用密度功能理论和有效的哈密顿模型以及对称分析来确定的。这为合理实现各种不同类型的新型费米斯提供了一个有趣的场所。因此,我们表明淋巴结线(I型和II),Dirac Fermion和Triple Point(TP)费米子激发可能会直接出现,这是带有$α$ -LI $ -LI $ _ {\ rm 3} $ n-n-n-n an-n an-pem crystal Crystal Crystal Crystal Crystal Crystal cystal nitrides中频带反转的结果。施加的应变对于这些化合物而言是显着的,并且它总是导致淋巴结线类型的大量修饰。最重要的是,在应变下,可以在系统中实现II型节点环。这些独特的特征使$α$ -li $ _ {\ rm 3} $ n型晶体结构成为理想的游乐场,以实现适合技术应用的各种新型新型费米子。
Materials with tunable topological features, simple crystal structure and flexible synthesis, are in extraordinary demand towards technological exploitation of unique properties of topological nodal points. The controlled design of the lattice geometry of light elements is determined by utilizing density functional theory and the effective Hamiltonian model together with the symmetry analysis. This provides an intriguing venue for reasonably achieving various distinct types of novel fermions. We, therefore, show that a nodal line (type-I and II), Dirac fermion, and triple point (TP) fermionic excitation can potentially appear as a direct result of a band inversion in group-I nitrides with $α$-Li$_{\rm 3}$N-type crystal structure. The imposed strain is exclusively significant for these compounds, and it invariably leads to the considerable modification of the nodal line type. Most importantly, a type-II nodal loop can be realized in the system under strain. These unique characteristics make $α$-Li$_{\rm 3} $N-type crystal structure an ideal playground to achieve various types of novel fermions well-suited for technological applications.