论文标题

“标准” PWN的非标准特性:使用其IR和X射线发射揭示PWN G21.5-0.9的奥秘

The Nonstandard Properties of a "Standard" PWN: Unveiling the Mysteries of PWN G21.5-0.9 Using its IR and X-ray emission

论文作者

Hattori, Soichiro, Straal, Samayra M., Zhang, Emily, Temim, Tea, Gelfand, Joseph D., Slane, Patrick O.

论文摘要

脉冲星云(PWN)的演变取决于祖细胞,超新星和周围环境的特性。由于其中一些数量很难测量,因此以进化模型重现观察到的动力学特性和光谱能分布(SED)通常是估计其值的最佳方法。由Pulsar J1833-1034提供支持的G21.5-0.9是一个良好的PWN,以前的建模工作一直在努力重现观察到的SED。在这项研究中,我们重新分析了档案红外(IR; Herschel,Spitzer)和X射线(Chandra,Nustar,Hitomi)观察。该来源的IR线和连续图之间观察到的相似形态表明,这种发射的很大一部分是由周围的灰尘和气体产生的,而不是来自PWN的同步辐射。此外,我们发现该来源的宽带X射线频谱最好通过一系列适合不同能量带的功率定律来描述。对于所有X射线探测器,我们发现在较高能带下明显的软化和降低了未吸收的通量。当Supernova弹出器具有较低的初始动能$ e _ {\ Mathrm {sn}} \大约1.2 \ times 10^{50} {50} \,\ Mathrm {ergs {ergs {ergs at empertrem prectrem semptrime prectry时能量。最后,如果环境介质$ {\ sim} 1.8 $ PC在爆炸中心以北,我们的SNR的流体动力模型可以再现其形态。

The evolution of a pulsar wind nebula (PWN) depends on properties of the progenitor star, supernova, and surrounding environment. As some of these quantities are difficult to measure, reproducing the observed dynamical properties and spectral energy distribution (SED) with an evolutionary model is often the best approach in estimating their values. G21.5-0.9, powered by the pulsar J1833-1034, is a well observed PWN for which previous modeling efforts have struggled to reproduce the observed SED. In this study, we reanalyze archival infrared (IR; Herschel, Spitzer) and X-ray (Chandra, NuSTAR, Hitomi) observations. The similar morphology observed between IR line and continuum images of this source indicates that a significant portion of this emission is generated by surrounding dust and gas, and not synchrotron radiation from the PWN. Furthermore, we find the broadband X-ray spectrum of this source is best described by a series of power laws fit over distinct energy bands. For all X-ray detectors, we find significant softening and decreasing unabsorbed flux at higher energy bands. Our model for the evolution of a PWN is able to reproduce the properties of this source when the supernova ejecta has a low initial kinetic energy $E_{\mathrm{sn}} \approx 1.2 \times 10^{50}\,\mathrm{ergs}$ and the spectrum of particles injected into the PWN at the termination shock is softer at low energies. Lastly, our hydrodynamical modeling of the SNR can reproduce its morphology if there is a significant density increase of the ambient medium ${\sim} 1.8$ pc north of the explosion center.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源