论文标题

老虎:使用ISING机器应用于经典算法任务和量子电路门的拓扑意识分配

TIGER: Topology-aware Assignment using Ising machines Application to Classical Algorithm Tasks and Quantum Circuit Gates

论文作者

Butko, Anastasiia, Turimbetov, Ilyas, Michelogiannakis, George, Donofrio, David, Unat, Didem, Shalf, John

论文摘要

随着系统大小和异质性的增加,最佳地映射并行应用以计算和通信资源变得越来越重要。基于门的量子计算中存在类似的映射问题,目的是以拓扑感知的方式将任务映射到门。这是一个NP完整图同构问题,现有的任务分配方法要么是启发式方法,要么基于物理优化算法,提供了不同的速度和解决方案质量折衷。量子机和数字退火器等伊辛机器最近已获得,并提供了解决此类优化问题的替代硬件解决方案。在本文中,我们提出了一种算法,该算法允许使用ISING机器解决拓扑感知的分配问题。我们在两种用例中演示了算法,即经典任务调度和量子电路门调度。老虎---拓扑感知任务/门分配映射器工具---实现我们建议的算法,并自动将它们集成到量子软件环境中。为了解决物理求解器的局限性,我们提出并实施了特定于域的分区策略,该策略允许解决更大规模的问题和权重优化算法,该算法允许调整ISING模型参数以实现更好的恢复。我们使用D-Wave的量子退火器来证明我们的算法,并根据性能,分区效率和溶液质量评估所提出的工具流。与经典解决方案,更好的可伸缩性和更高的溶液质量与建议的分区方法相比,结果显示出明显的加速速度。与IBM QX Optimizer相比,量子电路分配的平均数据移动成本平均降低了68%。

Optimally mapping a parallel application to compute and communication resources is increasingly important as both system size and heterogeneity increase. A similar mapping problem exists in gate-based quantum computing where the objective is to map tasks to gates in a topology-aware fashion. This is an NP-complete graph isomorphism problem, and existing task assignment approaches are either heuristic or based on physical optimization algorithms, providing different speed and solution quality trade-offs. Ising machines such as quantum and digital annealers have recently become available and offer an alternative hardware solution to solve this type of optimization problems. In this paper, we propose an algorithm that allows solving the topology-aware assignment problem using Ising machines. We demonstrate the algorithm on two use cases, i.e. classical task scheduling and quantum circuit gate scheduling. TIGER---topology-aware task/gate assignment mapper tool---implements our proposed algorithms and automatically integrates them into the quantum software environment. To address the limitations of physical solver, we propose and implement a domain-specific partition strategy that allows solving larger-scale problems and a weight optimization algorithm that allows tuning Ising model parameters to achieve better restuls. We use D-Wave's quantum annealer to demonstrate our algorithm and evaluate the proposed tool flow in terms of performance, partition efficiency, and solution quality. Results show significant speed-up compared to classical solutions, better scalability, and higher solution quality when using TIGER together with the proposed partition method. It reduces the data movement cost by 68\% in average for quantum circuit assignment compared to the IBM QX optimizer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源