论文标题
两个球在双曲线空间中最大化第三个Neumann特征值
Two balls maximize the third Neumann eigenvalue in hyperbolic space
论文作者
论文摘要
我们表明,双曲线空间中诺伊曼·拉普拉斯(Neumann Laplacian)的第三个特征值在给定体积的域中,在两个大地球的域中是最大的分离。这扩展了欧几里得空间中的Bucur和Henrot的最新结果,同时提供了他们论点的关键步骤的新证明
We show that the third eigenvalue of the Neumann Laplacian in hyperbolic space is maximal for the disjoint union of two geodesic balls, among domains of given volume. This extends a recent result by Bucur and Henrot in Euclidean space, while providing a new proof of a key step in their argument