论文标题

CMAX ++:使用不准确模型的计划和执行经验

CMAX++ : Leveraging Experience in Planning and Execution using Inaccurate Models

论文作者

Vemula, Anirudh, Bagnell, J. Andrew, Likhachev, Maxim

论文摘要

给定对准确的动力模型的访问,现代计划方法可以有效地计算重复性机器人任务的可行和最佳计划。但是,在执行前很难对现实世界的真实动态进行建模,尤其是对于需要与参数未知的对象进行交互的任务。 CMAX最近的一种计划方法通过在执行过程中在线调整计划者来解决此问题,以使所得计划偏离不准确的模型区域。 CMAX虽然被证明可以保证达到目标,但需要对用于计划的模型的准确性进行牢固的假设,并且无法提高解决方案的质量,而不是相同任务的重复。在本文中,我们提出了CMAX ++,这种方法利用了现实世界的经验来提高生成计划的质量,而不是连续重复的机器人任务。 CMAX ++通过使用可能不准确模型的基于模型的计划和基于模型的计划集成了无模型学习来实现这一目标。随着重复次数的增加,我们提供了CMAX ++对最佳路径成本的完整性和渐近收敛性的可证明的保证。 CMAX ++还显示出在模拟机器人任务中的表现优于基线,包括3D移动机器人导航,其中轨道摩擦是错误建模的,以及一个7D的拾取任务,其中对象的质量是未知的,从而导致真实和建模动力学之间的差异。

Given access to accurate dynamical models, modern planning approaches are effective in computing feasible and optimal plans for repetitive robotic tasks. However, it is difficult to model the true dynamics of the real world before execution, especially for tasks requiring interactions with objects whose parameters are unknown. A recent planning approach, CMAX, tackles this problem by adapting the planner online during execution to bias the resulting plans away from inaccurately modeled regions. CMAX, while being provably guaranteed to reach the goal, requires strong assumptions on the accuracy of the model used for planning and fails to improve the quality of the solution over repetitions of the same task. In this paper we propose CMAX++, an approach that leverages real-world experience to improve the quality of resulting plans over successive repetitions of a robotic task. CMAX++ achieves this by integrating model-free learning using acquired experience with model-based planning using the potentially inaccurate model. We provide provable guarantees on the completeness and asymptotic convergence of CMAX++ to the optimal path cost as the number of repetitions increases. CMAX++ is also shown to outperform baselines in simulated robotic tasks including 3D mobile robot navigation where the track friction is incorrectly modeled, and a 7D pick-and-place task where the mass of the object is unknown leading to discrepancy between true and modeled dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源