论文标题
基于HAAR小波的轨迹自回旋流动轨迹
Haar Wavelet based Block Autoregressive Flows for Trajectories
论文作者
论文摘要
诸如行人之类的轨迹的预测对于自主代理的性能至关重要。尽管以前的工作已经利用有条件的生成模型(例如gan和vaes)来学习可能的未来轨迹,但可以准确地对这些多模式分布的依赖性结构进行建模,尤其是在长期的范围内仍然具有挑战性。基于流量的生成模型可以对复杂分布进行建模,从而确切的推断。这些包括具有分裂耦合可逆变换的变体,与自回旋的对应物相比,它们更容易平行。为此,我们引入了一种新型的基于HAAR小波的块自回归模型,该模型利用分裂耦合,该模型以不同水平的粒度水平的基于HAAR小波的变换获得的粗轨迹为条件。这产生了一种精确的推理方法,该方法可以以层次的方式对不同时空分辨率进行轨迹进行建模。我们说明了我们在两个现实世界数据集上产生多种和准确的轨迹的方法 - 斯坦福无人机和相交无人机。
Prediction of trajectories such as that of pedestrians is crucial to the performance of autonomous agents. While previous works have leveraged conditional generative models like GANs and VAEs for learning the likely future trajectories, accurately modeling the dependency structure of these multimodal distributions, particularly over long time horizons remains challenging. Normalizing flow based generative models can model complex distributions admitting exact inference. These include variants with split coupling invertible transformations that are easier to parallelize compared to their autoregressive counterparts. To this end, we introduce a novel Haar wavelet based block autoregressive model leveraging split couplings, conditioned on coarse trajectories obtained from Haar wavelet based transformations at different levels of granularity. This yields an exact inference method that models trajectories at different spatio-temporal resolutions in a hierarchical manner. We illustrate the advantages of our approach for generating diverse and accurate trajectories on two real-world datasets - Stanford Drone and Intersection Drone.