论文标题

时空生成模型中的潜在状​​态推断

Latent State Inference in a Spatiotemporal Generative Model

论文作者

Karlbauer, Matthias, Menge, Tobias, Otte, Sebastian, Lensch, Hendrik P. A., Scholten, Thomas, Wulfmeyer, Volker, Butz, Martin V.

论文摘要

关于确定特定系统动态的隐藏因素的知识对于解释它们和追求目标指导的干预措施至关重要。在没有监督的情况下,从时间序列数据中推断这些因素仍然是一个公开挑战。在这里,我们专注于时空过程,包括波浪的传播和天气动力学,为此我们假设通用原因(例如物理学)在整个时空中都适用。与时间卷积神经网络和其他相关方法相比,使用并增强了最近引入的分布式时空图(DISTANA)的人工神经网络结构(DISTANA)(DISTANA),以学习此类过程,并实现更准确的预测。我们表明,当Distana与回顾性潜在的状态推理原理结合使用,称为主动调整,可以可靠地得出位置尊重的隐藏因果因素。在当前的天气预测基准中,Expana仅通过观察温度动力学来侵犯我们的星球的陆地面膜,同时使用自我推断的信息来改善其自身的未来温度预测。

Knowledge about the hidden factors that determine particular system dynamics is crucial for both explaining them and pursuing goal-directed interventions. Inferring these factors from time series data without supervision remains an open challenge. Here, we focus on spatiotemporal processes, including wave propagation and weather dynamics, for which we assume that universal causes (e.g. physics) apply throughout space and time. A recently introduced DIstributed SpatioTemporal graph Artificial Neural network Architecture (DISTANA) is used and enhanced to learn such processes, requiring fewer parameters and achieving significantly more accurate predictions compared to temporal convolutional neural networks and other related approaches. We show that DISTANA, when combined with a retrospective latent state inference principle called active tuning, can reliably derive location-respective hidden causal factors. In a current weather prediction benchmark, DISTANA infers our planet's land-sea mask solely by observing temperature dynamics and, meanwhile, uses the self inferred information to improve its own future temperature predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源