论文标题
具有保证性能的LPV型号的参数依赖性鲁棒不变集的计算
Computation of Parameter Dependent Robust Invariant Sets for LPV Models with Guaranteed Performance
论文作者
论文摘要
本文提出了一种迭代算法,以计算线性参数变化(LPV)系统的稳健控制不变(RCI)集以及诱导不变性的控制定律。由于通常可以使用调度参数的实时测量值,因此,在提出的公式中,我们允许RCI集说明以及不变性诱导控制器的调度参数取决于。因此,所考虑的配方导致集合不变性的参数依赖性条件,该条件被Polya的弛豫取代了足够的线性基质不等式(LMI)条件。然后,将这些LMI条件与半限制编程(SDP)问题中的新型体积最大化方法相结合,该方法旨在计算所需的大型RCI集合。除了确保不变性外,还可以通过将所选二次性能水平作为SDP问题的附加约束来确保RCI集合中的性能。报告的数值示例表明,提出的迭代算法可以生成不超过计算的最大RCI集的不变集,而无需利用调度参数信息。
This paper presents an iterative algorithm to compute a Robust Control Invariant (RCI) set, along with an invariance-inducing control law, for Linear Parameter-Varying (LPV) systems. As the real-time measurements of the scheduling parameters are typically available, in the presented formulation, we allow the RCI set description along with the invariance-inducing controller to be scheduling parameter dependent. The considered formulation thus leads to parameter-dependent conditions for the set invariance, which are replaced by sufficient Linear Matrix Inequality (LMI) conditions via Polya's relaxation. These LMI conditions are then combined with a novel volume maximization approach in a Semidefinite Programming (SDP) problem, which aims at computing the desirably large RCI set. In addition to ensuring invariance, it is also possible to guarantee performance within the RCI set by imposing a chosen quadratic performance level as an additional constraint in the SDP problem. The reported numerical example shows that the presented iterative algorithm can generate invariant sets which are larger than the maximal RCI sets computed without exploiting scheduling parameter information.