论文标题
在超图中匹配的分布式算法
Distributed Algorithms for Matching in Hypergraphs
论文作者
论文摘要
$ $我们研究$ d $均匀的超盖匹配($ d $ -uhm)问题:给定一个$ n $ vertex hypergraph $ g $,每个hyperege均为尺寸$ d $,找到最大的Disbinatity Dissinational discoint Hyperedges。对于$ d \ geq3 $,查找最大匹配的问题是NP完整的,并且是KARP的21 $ \ Mathcal {np} $ - 完整问题之一。在本文中,我们对在大量平行计算(MPC)模型中找到匹配的问题感兴趣,该模型是MapReduce式计算的常见抽象。在此模型中,我们以$ d $均匀的超图匹配介绍了前三种并行算法,并根据资源(例如内存使用情况,所需的通信回合和近似值)进行分析。亮点包括: $ \ bullet $ a $ o(\ log n)$ - 回合$ d $ - Approximation算法,使用$ O(nd)$每台机器。 $ \ bullet $ a $ 3 $ -ROUND,$ o(d^2)$ - 使用$ \ tilde {o}(\ sqrt {nm})$ space每台机器的近似算法。 $ \ bullet $ a $ 3 $ -ROUND算法计算包含$(d-1+\ frac {1} {1} {d})^2 $ -approximation的子图,使用$ \ tilde {o}(o \ tilde {o}(\ sqrt {nm}) $ \ tilde {o}(n \ sqrt {nm})一般。
$ $We study the $d$-Uniform Hypergraph Matching ($d$-UHM) problem: given an $n$-vertex hypergraph $G$ where every hyperedge is of size $d$, find a maximum cardinality set of disjoint hyperedges. For $d\geq3$, the problem of finding the maximum matching is NP-complete, and was one of Karp's 21 $\mathcal{NP}$-complete problems. In this paper we are interested in the problem of finding matchings in hypergraphs in the massively parallel computation (MPC) model that is a common abstraction of MapReduce-style computation. In this model, we present the first three parallel algorithms for $d$-Uniform Hypergraph Matching, and we analyse them in terms of resources such as memory usage, rounds of communication needed, and approximation ratio. The highlights include: $\bullet$ A $O(\log n)$-round $d$-approximation algorithm that uses $O(nd)$ space per machine. $\bullet$ A $3$-round, $O(d^2)$-approximation algorithm that uses $\tilde{O}(\sqrt{nm})$ space per machine. $\bullet$ A $3$-round algorithm that computes a subgraph containing a $(d-1+\frac{1}{d})^2$-approximation, using $\tilde{O}(\sqrt{nm})$ space per machine for linear hypergraphs, and $\tilde{O}(n\sqrt{nm})$ in general.