论文标题
用极化Qubit的施温格的哈密顿量的变异模拟
Variational Simulation of Schwinger's Hamiltonian with Polarisation Qubits
论文作者
论文摘要
量子物理和量子化学的数值仿真通常涉及棘手的自由度,并且在一般形式中未知近似。实际上,随着系统尺寸的增加,使用可用数值方法代表量子力学状态变得更具挑战性。最近已经提出了作为变异模型实施的量子算法来加速此类模拟。在这里,我们研究噪声对变异框架内schwinger模型中量子相变的影响。实验是使用自由空间光学方案构建的,以实现一对极化量子位,并使任何两Q Q Quibent状态都能在实验中进行实验准备,以便为机器公差做好准备。我们专门利用了工程噪声的可能性和偏振量尺寸的分流可能性,以探索NISQ架构的变分算法的极限,以识别和量化用嘈杂的Qubits识别和量化量子相变。我们发现,尽管存在噪声,但即使使用变分量子算法,对于两数数分系统的系统,也可以检测到施温格顿量的相变。
The numerical emulation of quantum physics and quantum chemistry often involves an intractable number of degrees of freedom and admits no known approximation in general form. In practice, representing quantum-mechanical states using available numerical methods becomes exponentially more challenging with increasing system size. Recently quantum algorithms implemented as variational models, have been proposed to accelerate such simulations. Here we study the effect of noise on the quantum phase transition in the Schwinger model, within a variational framework. The experiments are built using a free space optical scheme to realize a pair of polarization qubits and enable any two-qubit state to be experimentally prepared up to machine tolerance. We specifically exploit the possibility to engineer noise and decoherence for polarization qubits to explore the limits of variational algorithms for NISQ architectures in identifying and quantifying quantum phase transitions with noisy qubits. We find that despite the presence of noise one can detect the phase transition of the Schwinger Hamiltonian even for a two-qubit system using variational quantum algorithms.