论文标题
激活随机步行Z的活动阶段
Active Phase for Activated Random Walk on Z
论文作者
论文摘要
我们考虑$ \ mathbb {z} $上激活的随机步行模型。在此模型中,每个粒子都执行连续的简单对称随机步行,并以$λ$的价格入睡。睡眠粒子不会移动,但在存在另一个粒子的情况下被重新激活。我们表明,对于任何睡眠率$λ<\ infty $,如果密度$ζ$足够接近$ 1 $,则系统保持活跃。
We consider the Activated Random Walk model on $\mathbb{Z}$. In this model, each particle performs a continuous-time simple symmetric random walk, and falls asleep at rate $λ$. A sleeping particle does not move but it is reactivated in the presence of another particle. We show that for any sleep rate $λ< \infty$ if the density $ ζ$ is close enough to $1$ then the system stays active.