论文标题

通过多层对比学习增强对话生成

Enhancing Dialogue Generation via Multi-Level Contrastive Learning

论文作者

Li, Xin, Li, Piji, Wang, Yan, Liu, Xiaojiang, Lam, Wai

论文摘要

对话生成的大多数现有作品都是直接在网站上爬行的数据驱动的数据驱动模型。他们主要致力于改善模型体系结构以产生更好的响应,但很少关注对比考虑培训数据的质量。在本文中,我们提出了一个多层次的对比学习范式,以模拟相对于查询的响应的细粒度质量。排名感知的校准(RC)网络旨在构建多层对比优化目标。由于这些目标是根据句子级别计算的,因此可能会错误地鼓励/抑制无信息/信息性词的产生。为了解决这个偶然的问题,一方面,我们设计了一种精致的令牌级策略,以更准确地估算实例损失。另一方面,我们构建了知识推论(KI)组件,以在培训期间从参考中获取关键字知识,并利用此类信息以鼓励产生内容丰富的单词。我们在精心注释的对话数据集上评估了提出的模型,结果表明,与基线模型相比,我们的模型可以产生更相关和多样的响应。

Most of the existing works for dialogue generation are data-driven models trained directly on corpora crawled from websites. They mainly focus on improving the model architecture to produce better responses but pay little attention to considering the quality of the training data contrastively. In this paper, we propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query. A Rank-aware Calibration (RC) network is designed to construct the multi-level contrastive optimization objectives. Since these objectives are calculated based on the sentence level, which may erroneously encourage/suppress the generation of uninformative/informative words. To tackle this incidental issue, on one hand, we design an exquisite token-level strategy for estimating the instance loss more accurately. On the other hand, we build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words. We evaluate the proposed model on a carefully annotated dialogue dataset and the results suggest that our model can generate more relevant and diverse responses compared to the baseline models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源