论文标题

Akita:虚拟化云的CPU调度程序

Akita: A CPU scheduler for virtualized Clouds

论文作者

Asyabi, Esmail, Bestavros, Azer, Mancuso, Renato, West, Richard, Sharafzadeh, Erfan

论文摘要

云继承了操作系统的CPU调度策略。这些政策在利用最佳及时机制来提高所有可计划实体的响应能力的同时,都可以实现公平性,而与其服务水平的目标(SLOS)无关。这导致了不可预测的绩效,迫使云提供商执行严格的保留和隔离政策,以防止高批判性服务(例如,备忘录)受到低临界性影响(例如记录)的影响,从而导致低利用率。 在本文中,我们提出了Akita,这是一种在高利用率时提供可预测性能的操纵程序CPU调度程序。 Akita允许虚拟机(VM)分为高批判性VM。 Akita通过在必要时暂时降低低临界性VM来暂时减慢云提供商达到高批判性VM的能力的能力提供了强有力的保证。因此,Akita允许在同一物理机器上共存高和低批判性VM,从而导致更高的利用率。 XEN管理程序中的原型实现证明了Akita的有效性。我们提出了实验结果,这些结果表明采用Akita作为CPU操纵裤调度程序的许多优势。特别是,我们表明,尽管与低临界性CPU结合的VMS共同分居,但高批判性MEMCACHED VM仍能够提供可预测的性能。

Clouds inherit CPU scheduling policies of operating systems. These policies enforce fairness while leveraging best-effort mechanisms to enhance responsiveness of all schedulable entities, irrespective of their service level objectives (SLOs). This leads to unpredictable performance that forces cloud providers to enforce strict reservation and isolation policies to prevent high-criticality services (e.g., Memcached) from being impacted by low-criticality ones (e.g., logging), which results in low utilization. In this paper, we present Akita, a hypervisor CPU scheduler that delivers predictable performance at high utilization. Akita allows virtual machines (VMs) to be categorized into high- and low-criticality VMs. Akita provides strong guarantees on the ability of cloud providers to meet SLOs of high-criticality VMs, by temporarily slowing down low-criticality VMs if necessary. Akita, therefore, allows the co-existence of high and low-criticality VMs on the same physical machine, leading to higher utilization. The effectiveness of Akita is demonstrated by a prototype implementation in the Xen hypervisor. We present experimental results that show the many advantages of adopting Akita as the hypervisor CPU scheduler. In particular, we show that high-criticality Memcached VMs are able to deliver predictable performance despite being co-located with low-criticality CPU-bound VMs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源