论文标题

纳米颗粒组件中局部等离子体响应的可预测性

Predictability of localized plasmonic responses in nanoparticle assemblies

论文作者

Roccapriore, Kevin M., Ziatdinov, Maxim, Cho, Shin Hum, Hachtel, Jordan A., Kalinin, Sergei V.

论文摘要

具有所需纳米光质特性的纳米级结构的设计是纳米词和纳米摄氏的关键任务。在这里,使用编码器描述器神经网络建立了局部纳米颗粒几何形状与等离子响应之间的相关关系。在IM2SPEC网络中,通过编码观察到的几何形状到少量潜在变量,然后将解码分解为等离激子光谱,从而建立了局部粒子几何与局部光谱之间的相关关系。在Spec2IM网络中,关系逆转。出乎意料的是,这些减少的描述允许基于固定成分和表面化学状态的几何形状对局部响应进行高质量预测。对潜在空间分布的分析以及相应的解码和最接近的(在潜在空间中)编码的图像可洞悉纳米粒子阵列中等离子相互作用的生成机理。最终,这种方法为确定可以产生最接近所需频谱的配置创造了一条途径,为纳米质结构的随机设计铺平了道路。

Design of nanoscale structures with desired nanophotonic properties are key tasks for nanooptics and nanophotonics. Here, the correlative relationship between local nanoparticle geometries and their plasmonic responses is established using encoder-decoder neural networks. In the im2spec network, the correlative relationship between local particle geometries and local spectra is established via encoding the observed geometries to a small number of latent variables and subsequently decoding into plasmonic spectra; in the spec2im network, the relationship is reversed. Surprisingly, these reduced descriptions allow high-veracity predictions of the local responses based on geometries for fixed compositions and chemical states of the surface. The analysis of the latent space distributions and the corresponding decoded and closest (in latent space) encoded images yields insight into the generative mechanisms of plasmonic interactions in the nanoparticle arrays. Ultimately, this approach creates a path toward determining configurations that can yield the spectrum closest to the desired one, paving the way for stochastic design of nanoplasmonic structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源