论文标题
使用GPS距离连贯性的基于位置的行为身份验证
Location-based Behavioral Authentication Using GPS Distance Coherence
论文作者
论文摘要
当前的大多数用户身份验证系统都是基于PIN代码,密码或生物识别特性,这些特性可能会在使用和安全性方面存在一些限制。生活方式身份验证已成为一种新的研究方法。一个有希望的想法是使用位置历史记录,因为它相对唯一。即使人们生活在同一地区或偶尔旅行时,也不会每天都有不同。对于全球定位系统(GPS)数据,先前的工作使用经度,纬度和时间戳作为分类的功能。在本文中,我们研究了一种新方法,该方法利用距离连贯性可以从GPS本身中提取,而无需其他信息。我们应用了三个集合分类随机孔,外额和包装算法;实验结果表明,该方法分别可以达到99.42%,99.12%和99.25%的精度。
Most of the current user authentication systems are based on PIN code, password, or biometrics traits which can have some limitations in usage and security. Lifestyle authentication has become a new research approach. A promising idea for it is to use the location history since it is relatively unique. Even when people are living in the same area or have occasional travel, it does not vary from day to day. For Global Positioning System (GPS) data, the previous work used the longitude, the latitude, and the timestamp as the features for the classification. In this paper, we investigate a new approach utilizing the distance coherence which can be extracted from the GPS itself without the need to require other information. We applied three ensemble classification RandomForest, ExtraTrees, and Bagging algorithms; and the experimental result showed that the approach can achieve 99.42%, 99.12%, and 99.25% of accuracy, respectively.