论文标题

葡萄糖:广义和情境化的故事解释

GLUCOSE: GeneraLized and COntextualized Story Explanations

论文作者

Mostafazadeh, Nasrin, Kalyanpur, Aditya, Moon, Lori, Buchanan, David, Berkowitz, Lauren, Biran, Or, Chu-Carroll, Jennifer

论文摘要

当人类阅读或倾听时,他们会做出隐性的常识推论,以构成他们对发生的事情和原因的理解。作为迈向可以建立类似心理模型的AI系统的一步,我们引入了葡萄糖,这是一个大型的隐性因果关系知识的大规模数据集,被编码为有关世界的因果小学理论,每个人都在叙事环境中扎根。为了构建葡萄糖,我们借鉴了认知心理学,以确定因果解释的十个维度,重点关注事件,国家,动机和情感。每个葡萄糖条目都包含一个特定于故事的因果陈述,并配对从该陈述中概括的推论规则。本文详细介绍了两种具体贡献。首先,我们介绍我们的平台,以便有效地按大规模众包葡萄糖数据,该平台使用半结构化模板来引起因果解释。使用此平台,我们总共收集了约670k的特定陈述和一般规则,这些陈述捕获了关于日常情况的隐性常识知识。其次,我们表明,现有的知识资源和验证的语言模型不包括或容易预测葡萄糖丰富的推论内容。但是,当对这些知识的最新神经模型进行培训时,他们可以开始对与人类心理模型相匹配的看不见的故事进行常识推断。

When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context. To construct GLUCOSE, we drew on cognitive psychology to identify ten dimensions of causal explanation, focusing on events, states, motivations, and emotions. Each GLUCOSE entry includes a story-specific causal statement paired with an inference rule generalized from the statement. This paper details two concrete contributions. First, we present our platform for effectively crowdsourcing GLUCOSE data at scale, which uses semi-structured templates to elicit causal explanations. Using this platform, we collected a total of ~670K specific statements and general rules that capture implicit commonsense knowledge about everyday situations. Second, we show that existing knowledge resources and pretrained language models do not include or readily predict GLUCOSE's rich inferential content. However, when state-of-the-art neural models are trained on this knowledge, they can start to make commonsense inferences on unseen stories that match humans' mental models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源