论文标题
Genasm:用于基因组序列分析的高性能,低功率近似弦匹配加速框架
GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis
论文作者
论文摘要
基因组序列分析能够在医学和科学领域(例如个性化医学,爆发追踪以及对进化的理解)方面取得重大进步。不幸的是,目前,它是由现有系统的计算能力和内存带宽限制所瓶颈的,因为基因组序列分析中的许多步骤都必须处理大量数据。对此瓶颈的主要贡献是近似的弦匹配(ASM)。 我们提出了基因组序列分析的第一个ASM加速框架Genasm。我们修改了基础ASM算法(BITAP),以显着增加其并行性并减少其内存足迹,并设计了第一个用于BITAP的硬件加速器。我们的硬件加速器由专门的计算单元和片上SRAM组成,旨在将计算速率与内存容量和带宽相匹配。 我们证明了Genasm是一个灵活,高性能和低功耗的框架,在基因组序列分析中为三种不同的用例提供了显着的性能和功率益处:1)Genasm加速了长读和短读数的读取对齐。对于长期阅读,Genasm的表现分别超过116倍和3.9倍的最先进的软件和硬件加速器,同时消耗了37倍和2.7倍的功率。对于简短的读取,Genasm的表现优于最先进的软件和硬件加速器111X和1.9倍。 2)基因质加速了对简短读数的预一致性过滤,3.7倍的性能是最先进的预订过滤器的性能,同时减少1.7倍的功率,并显着提高过滤精度。 3)Genasm在最先进的软件库和基于FPGA的加速器上分别具有22-12501X和9.3-400X加速度的编辑距离计算,同时消耗了548-582X和67倍的功率。
Genome sequence analysis has enabled significant advancements in medical and scientific areas such as personalized medicine, outbreak tracing, and the understanding of evolution. Unfortunately, it is currently bottlenecked by the computational power and memory bandwidth limitations of existing systems, as many of the steps in genome sequence analysis must process a large amount of data. A major contributor to this bottleneck is approximate string matching (ASM). We propose GenASM, the first ASM acceleration framework for genome sequence analysis. We modify the underlying ASM algorithm (Bitap) to significantly increase its parallelism and reduce its memory footprint, and we design the first hardware accelerator for Bitap. Our hardware accelerator consists of specialized compute units and on-chip SRAMs that are designed to match the rate of computation with memory capacity and bandwidth. We demonstrate that GenASM is a flexible, high-performance, and low-power framework, which provides significant performance and power benefits for three different use cases in genome sequence analysis: 1) GenASM accelerates read alignment for both long reads and short reads. For long reads, GenASM outperforms state-of-the-art software and hardware accelerators by 116x and 3.9x, respectively, while consuming 37x and 2.7x less power. For short reads, GenASM outperforms state-of-the-art software and hardware accelerators by 111x and 1.9x. 2) GenASM accelerates pre-alignment filtering for short reads, with 3.7x the performance of a state-of-the-art pre-alignment filter, while consuming 1.7x less power and significantly improving the filtering accuracy. 3) GenASM accelerates edit distance calculation, with 22-12501x and 9.3-400x speedups over the state-of-the-art software library and FPGA-based accelerator, respectively, while consuming 548-582x and 67x less power.