论文标题
兰道哈密顿人在双曲线半平台上的无间隙通过粗糙的几何形状
Gaplessness of Landau Hamiltonians on hyperbolic half-planes via coarse geometry
论文作者
论文摘要
我们使用粗糙的指数方法来证明双曲线半平面上的Landau Hamiltonian,即使在更一般的不完美半空间上,也没有光谱差距。因此,像欧几里得对应物的边缘量子大厅的边缘状态完全填补了兰道水平之间的空白。
We use coarse index methods to prove that the Landau Hamiltonian on the hyperbolic half-plane, and even on much more general imperfect half-spaces, has no spectral gaps. Thus the edge states of hyperbolic quantum Hall Hamiltonians completely fill up the gaps between Landau levels, just like those of the Euclidean counterpart.