论文标题

分配格和澳大利亚的常规代数

Distributive lattices and Auslander regular algebras

论文作者

Iyama, Osamu, Marczinzik, Rene

论文摘要

令$ l $表示至少两个点的有限晶格,让$ a $表示$ l $的发病率代数。我们证明,$ l $是分配的,并且仅当$ a $是Auslander常规环,这给出了分布式晶格的同源表征。在这种情况下,$ a $具有明确的最低注射核心,其$ i $ then的期限由$ l $ of $ i $ y $元素的元素给出。我们给出了$ a $的低音编号组合公式。我们应用结果表明,分布晶格$ l $的订单维度与$ l $的发病率代数的全球维度一致。另外,我们还使用更高的Auslander-Reiten翻译简单模块对分布晶格进行了分配晶格的分类。

Let $L$ denote a finite lattice with at least two points and let $A$ denote the incidence algebra of $L$. We prove that $L$ is distributive if and only if $A$ is an Auslander regular ring, which gives a homological characterisation of distributive lattices. In this case, $A$ has an explicit minimal injective coresolution, whose $i$-th term is given by the elements of $L$ covered by precisely $i$ elements. We give a combinatorial formula of the Bass numbers of $A$. We apply our results to show that the order dimension of a distributive lattice $L$ coincides with the global dimension of the incidence algebra of $L$. Also we categorify the rowmotion bijection for distributive lattices using higher Auslander-Reiten translates of the simple modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源