论文标题

明显跳跃扩散的开环确定性密度控制

Open-loop Deterministic Density Control of Marked Jump Diffusions

论文作者

Bakshi, Kaivlaya, Theodorou, Evangelos A.

论文摘要

对大量人群,由其连续密度代表的集合,多代理系统建模动力学和最佳控制的标准实践是使用本地反馈信息对个人决策进行建模。与闭环最佳控制方案(一种开环策略)相比,集中式控制器将相同的控制信号广播到代理集合,从而减轻了此类系统的计算和基础架构要求。这项工作考虑了由明显的跳跃扩散随机扩散方程所控制的剂的密度控制的开环,确定性和最佳控制合成。密度根据及时的Chapman-Kolmogorov局部局部差异方程而演变,并使用无限尺寸最小原理(IDMP)获得必要的最佳条件。我们建立了IDMP与动态编程原理以及合成控制器的IDMP和随机动态编程之间的关系。使用线性Feynman-KAC引理,为具有非摩擦和非线性漂移和噪声项的试剂动力学以及噪声项的试剂动力学提供了基于采样的算法来计算控制的算法。

The standard practice in modeling dynamics and optimal control of a large population, ensemble, multi-agent system represented by it's continuum density, is to model individual decision making using local feedback information. In comparison to a closed-loop optimal control scheme, an open-loop strategy, in which a centralized controller broadcasts identical control signals to the ensemble of agents, mitigates the computational and infrastructure requirements for such systems. This work considers the open-loop, deterministic and optimal control synthesis for the density control of agents governed by marked jump diffusion stochastic diffusion equations. The density evolves according to a forward-in-time Chapman-Kolmogorov partial integro-differential equation and the necessary optimality conditions are obtained using the infinite dimensional minimum principle (IDMP). We establish the relationship between the IDMP and the dynamic programming principle as well as the IDMP and stochastic dynamic programming for the synthesized controller. Using the linear Feynman-Kac lemma, a sampling-based algorithm to compute the control is presented and demonstrated for agent dynamics with non-affine and nonlinear drift as well as noise terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源